Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion.
نویسندگان
چکیده
To quantitatively elucidate attributes of myocyte-matrix adhesion, muscle cells were controllably peeled from narrow strips of collagen-coated glass. Initial growth of primary quail myoblasts on collagen strips was followed by cell alignment, elongation and end-on fusion between neighbors. This geometric influence on differentiation minimized lateral cell contact and cell branching, enabling detailed study of myocyte-matrix adhesion. A micropipette was used to pull back one end of a quasi-cylindrical cell while observing in detail the non-equilibrium detachment process. Peeling velocities fluctuated as focal roughness, microm in scale, was encountered along the detachment front. Nonetheless, mean peeling velocity ( microm/second) generally increased with detachment force (nN), consistent with forced disruption of adhesion bonds. Immunofluorescence of beta1-integrins correlated with the focal roughness and appeared to be clustered in axially extended focal contacts. In addition, the peeling forces and rates were found to be moderately well described by a dynamical peeling model for receptor-based adhesion (Dembo, M., Torney, D. C., Saxman, K. and Hammer, D. (1988). Proc. R. Soc. Lond. B 234, 55-83). Estimates were thereby obtained for the spontaneous, molecular off-rate (kooff, (less than or equal to)10/seconds) and the receptor complex stiffness (kappa, approx. 10(-5)-10(-6) N/m) of adherent myocytes. Interestingly, the local stiffness is within the range of flexible proteins of the spectrin superfamily. The overall approach lends itself to elucidating the developing function of other structural and adhesive components of cells, particularly skeletal muscle cells with specialized components, such as the spectrin-homolog dystrophin and its membrane-linked receptor dystroglycan.
منابع مشابه
Patterning, prestress, and peeling dynamics of myocytes.
As typical anchorage-dependent cells myocytes must balance contractility against adequate adhesion. Skeletal myotubes grown as isolated strips from myoblasts on micropatterned glass exhibited spontaneous peeling after one end of the myotube was mechanically detached. Such results indicate the development of a prestress in the cells. To assess this prestress and study the dynamic adhesion streng...
متن کاملModulation of fibroblast morphology and adhesion during collagen matrix remodeling.
When fibroblasts are placed within a three-dimensional collagen matrix, cell locomotion results in translocation of the flexible collagen fibrils of the matrix, a remodeling process that has been implicated in matrix morphogenesis during development and wound repair. In the current experiments, we studied formation and maturation of cell-matrix interactions under conditions in which we could di...
متن کاملFibroblasts probe substrate rigidity with filopodia extensions before occupying an area.
Rigidity sensing and durotaxis are thought to be important elements in wound healing, tissue formation, and cancer treatment. It has been challenging, however, to study the underlying mechanism due to difficulties in capturing cells during the transient response to a rigidity interface. We have addressed this problem by developing a model experimental system that confines cells to a micropatter...
متن کاملProbing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework.
Cell-matrix adhesion depends on the collective behaviours of clusters of receptor-ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aime...
متن کاملUpregulation of paxillin and focal adhesion signaling follows Dystroglycan Complex deletions and promotes a hypertensive state of differentiation.
Anchorage to matrix is mediated for many cells not only by integrin-based focal adhesions but also by a parallel assembly of integral and peripheral membrane proteins known as the Dystroglycan Complex. Deficiencies in either dystrophin (mdx mice) or γ-sarcoglycan (γSG(-/-) mice) components of the Dystroglycan Complex lead to upregulation of numerous focal adhesion proteins, and the phosphoprote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 10) شماره
صفحات -
تاریخ انتشار 1999